Limonoids from the Endemic Brazilian Species Raulinoa echinata

Maique W. Biavatti^{a,‡}, Paulo C. Vieira^{a,*}, M. Fátima G. F. da Silva^a, João B. Fernandes^a and Sérgio Albuquerque^b

- ^a Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905, São Carlos, SP, Brazil. *Fax: +55 16 260 8350. E-mail: paulo@dq.ufscar.br
- b Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. do Café, 14040-903, Ribeirão Preto, São Paulo, Brazil
- * Permanent address: UNIVALI, Curso de Farmácia, CP 360, 88303-202, Itajaí, SC, Brazil
- * Author for correspondence and reprint requests
- Z. Naturforsch. 56c, 570-574 (2001); received March 24, 2001

Raulinoa echinata, Limonoids, Trypanosoma cruzi

Phytochemical survey of stems and leaves of the South Brazilian endemic *Raulinoa echinata* Cowan, Rutaceae led to the isolation of five limonoid derivatives: the widespread limonin, limonexic acid, kihadalactone B, a methoxylated limonexic acid derivative and a degraded limonoid structurally related to fraxinellone. The two latter compounds have been isolated for the first time. These compounds displayed weak inhibitory activity when assayed *in vitro* against trypomastigote forms of *Trypanosoma cruzi*. In this paper, the isolation, structure elucidation and bioactivity of these compounds are reported.

Introduction

Raulinoa is a monospecific genus and the species Raulinoa echinata Cowan (Rutaceae) is endemic in the Itajaí Valley, SC, Brazil (Kaastra, 1982). This perennial woody shrub is characterized by the presence of spines and has been only found over a short distance (1000 m) on the frequently inundated banks of the Itajaí River in an approximate altitude of 100 m, showing a high degree of adaptation to the environment.

We have recently reported the isolation of some hexane extractable compounds of stems of *R. echinata* (Biavatti *et al.*, 2000). In continuation of our research on the chemistry of Rutaceae, methanol extracts of stems and leaves of *R. echinata* led to the isolation of typical rutaceous limonoids: the widespread limonin (1), limonexic acid (2), a limonexic acid derivative (3), a nomilin derivative (kihadalactone B) (4) and the degraded limonoid 5.

A wide range of biological activities has been described for limonoids and its degraded derivatives: insecticidal, insect growth regulation (Jayaprakasha *et al.*, 1997), insect antifeedant (Okamura, *et al.*, 1997), antifungal (Zhao *et al.*, 1998), anticarcinogenic (Champagne *et al.*, 1992), antimutagenic (Miyazawa *et al.*, 1995), among others.

In this work, the isolated compounds were assayed *in vitro* against trypomastigote forms of

Trypanosoma cruzi showing weak inhibitory activity.

Material and Methods

General experimental procedures

A Bruker DRX-400 spectrometer, operating at 400.13 MHz for ¹H and 100.62 MHz for ¹³C was used. All spectra were run in CDCl₃ or CDCl₃ with drops of DMSO-d₆ and with tetramethylsilane as internal standard. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. Mass spectra were obtained from a Quattro LC Micromass spectrometer, APCI- (25 eV of colision energy). For HREIMS a Autospec-Micromass-EBE was used (Universidade Estadual de Campinas).

Plant material

Stems and leaves of *R. echinata* were collected in Ressacada, Ibirama, SC, Brazil and identified by A. Reis (Universidade Federal de Santa Catarina) and J. R. Pirani (Universidade de São Paulo). Voucher specimens [A. Reis & M. Biavatti 2.570 (26/07/98)] were deposited at the Herbário Barbosa Rodrigues (HBR), Itajaí, SC, Brazil.

 $0939 - 5075/2001/0700 - 0570 \ \ 06.00 \quad \circledcirc \ \ 2001 \ \ Verlag \ der \ Zeitschrift \ für \ \ Naturforschung, \ Tübingen \cdot www.znaturforsch.com \cdot \quad D$

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Extraction and isolation of compounds

The dried and powdered stems (5 kg) and leaves (3 kg) were extracted with *n*-hexane and MeOH. Successively, half (100 g) of the MeOH crude extract of stems was fractionated over silica gel 60 (70–230 mesh) into four fractions: *n*-hexane, CH₂Cl₂, EtOAc and MeOH. The CH₂Cl₂ fraction (1.9 g) was successively chromatographed over silica gel (230–400 mesh) using as eluent appropriate ratios of hexane-acetone to furnish compound 5 (8 mg). The EtOAc (8.0 g) fraction was also chromatographed as described before, affording limonin (1) (1 g) and compound 4 (20 mg). From the MeOH fraction (90 g) compound 3 (50 mg) was also obtained after column chromatography.

Part of the MeOH crude extract of leaves (100 g) was submitted to liquid partition with solvents of increasing polarity, furnishing the following dry residues: hexane (35 g), CH₂Cl₂ (14 g), EtOAc (7 g) and MeOH (44 g). Successive column chromatography over silica gel (230–400 mesh) of the CH₂Cl₂ fraction yielded compound **2** (20 mg) and also limonin (**1**) (300 mg).

(-)-Limonin (1). White needles, mp 224–226°, $[\alpha]_D$ –101° (MeOH; c 0.07). Spectral data in agreement with the literature (Ng *et al.*, 1987).

(-)-Limonexic acid (2). White needles, mp 275–278°, $[\alpha]_D$ –43° (MeOH; c 0.03). APCI- MS/MS $[M]^-$ 502; with major fragments at m/z 458 (38), 414 (18), 399 (41), 381 (41), 345 (23), 263 (100), 150 (50), 134 (72), 110 (41). ¹H NMR: Table I. ¹³C NMR: Table II. (Ng et al., 1987).

(-)-21-O-Methyl-limonexic acid (3). White needles, mp 296–298°, $[\alpha]_D$ –54° (CH₂Cl₂; c 0.025). HREIMS: found: $[M]^{+}$ 516.23593; $C_{27}H_{32}O_{10}$ requires: 516.19956, with major fragments at m/z 505 (20), 411 (11), 320 (16), 264 (6), 97 (27), 55 (100). ¹H NMR: Table I. ¹³C NMR: Table II.

(-)-Kihadalactone B (**4**). Amorphous solid, mp $178-180^{\circ}$, $[\alpha]_{\rm D}$ -53° (CH₂Cl₂; c 0.01). HREIMS: found: [M]⁺⁻ 530.28797; C₃₀H₄₂O₈ requires: 530.28806; with major fragments at m/z 411 (15), 352 (90), 337 (100), 313 (35), 253 (27), 138 (30). ¹H NMR: Table I. ¹³C NMR: Table II. (Kishi *et al.*, 1992).

(-)-8,14-Epoxyfraxinellone (**5**). Viscous oil, $[\alpha]_D$ -22.5° (CH₂Cl₂; *c* 0.02). HREIMS: found:

[M]⁺ 248.10486; $C_{14}H_{16}O_4$ requires: 248.10488, with major fragments at m/z 207 (13), 180 (4), 162 (23), 148 (19), 81 (43), 69 (100) 55 (92). ¹H NMR: Table I. ¹³C NMR: Table II.

Bioactivity screening

In vitro trypomastigote forms of *T. cruzi* (Y strain) was performed according to established protocols (Alves *et al.*, 1999).

Results and Discussion

Compound 1 was identified as limonin by comparison with the spectral data described in the literature (Ng et al., 1987). Compound 2 differed

Table I. ¹H NMR spectral data for compounds 2–5.

Н	2ª	3	4	5
1	4.14 br s	4.07 <i>br s</i>	4.82 t (4.0)	
2	2.90 dd (16.7; 3.6)	3.02 dd (16.8; 3.6)	` ,	
2	2.79 d (16.7)	2.72 dd (16.8; 2.1)	3.14 m	
5	2.34 dd (15; 3)	2.22 dd (15.8; 3.1)	$2.40 \ m$	
2 2 5 6	3.01 t (15)	2.89 br t (15.8)		
		,	$1.93 \ m$	
6	2.41 <i>dd</i> (15; 3)	2.48 dd (15; 3.1)		
6 7		() ,	5.15 m	
9				$1.73 \ m$
	2.54 dd (10; 3.7)	1.58 m	$2.53 \ m$	
9		2.2.5		2.13 dt (15; 2.8)
11				2.10 (10, 2.0)
	$1.95 \ m$	1.82 m		1.48 m
11	1.55 111	1.02 ///		1.10 ///
12				1.31 m
12	$1.70 \ m$	1.94 m	1.50 m	1.51 ///
12	1.70 111	1.54 m	1.50 m	$1.60 \ m$
15	3.87 s	3.84 s	5.28 m	1.00 m
16	5.07 3	5.04 5	2.20 m	
17	5.32 s	5.24 s	$1.70 \ m$	5.19 s
18	1.17 s	1.16 s	$0.96 \ s$	$0.89 \ s$
19	4.49 <i>d</i> (13)	4.45 d (13)		0.89 3
19	4.86 d (13)	4.79 d (13)	$1.15 \ s$	
20	4.80 <i>u</i> (13)	4.79 a (13)	$2.67 \ m$	
21			$4.43 \ t \ (8.2)$	
21	6.01 s	5.65 s	$3.90 \ m$	7.48 m
21	0.01 3	5.05 \$	3.90 m	7.40 m
21-OMe		3.55 s		
22		3.33 s	$2.50 \ m$	6.35 m
22	6.24 s	6.36 s	2.30 m	0.55 m
22	0.24 3	0.50 \$	2 22 111	
22 23			$2.23 \ m$	7 47 5 + (1 7)
28	1.29 s	1 21 0	1.50 a	$7.47 \ br \ t \ (1.7)$
28		1.31 s	$1.50 \ s$	
30	1.16 s	1.19 s	1.39 s	1.60 a
	1.04 s	$1.05 \ s$	1.16 s	$1.60 \ s$
1-Ac			1.99 s	
7-Ac			2.11 s	

^a In CDCl₃ with drops of (CD₃)₂SO.

Table II. ¹³C NMR spectral data for compounds 2-5.

C	2ª	3	4	5
1	79.2	80.3	70.8	
2	35.5	35.7	34.8	
2 3 4	168.8	169.0	170.2	
4	77.1	78.9	85.4	
5	59.2	61.0	44.1	
6	34.9	36.4	26.3	
7	205.8	205.8	74.0	
8	44.9	46.1	41.8	66.1
9	46.8	48.2	35.5	31.5
10	50.6	51.8	44.2	
11	17.7	19.3	16.2	16.2
12	29.4	31.3	33.5	32.5
13	37.0	37.8	46.4	39.9
14	64.4	64.8	158.6	65.6
15	52.1	52.8	118.9	172.6
16	164.9	165.0	34.9	
17	77.9	77.9	57.9	82.7
18	20.4	21.5	18.8	16.2
19	64.4	65.5	15.2	
20	162.6	160.5	37.4	119.9
21	97.4	102.7	72.4	143.8
22	121.7	124.0	34.0	108.4
23	168.2	168.4	176.5	139.9
28	29.1	30.1	34.4	
29	19.9	21.5	23.6	
30	15.9	16.9	27.3	17.9
OMe		56.9		
1-Ac			21.1	
			169.9	
7-Ac			20.9 169.8	

^a In CDCl₃ with drops of (CD₃)₂SO.

from limonin only in oxidation of the furan ring and was identified as limonexic acid on the basis of the following: (a) the 1 H NMR spectrum did not show the presence of a furan group; instead, resonances at δ 6.24 and 6.01 ppm (Table I) indicated a dihydrofuranone system, (b) DEPT 135 spectrum showed resonances at δ 97.4 and 121.7 ppm (Table II) consistent with the proposed system, (c) all the other signals related to limonoid skeleton were identical to compound **1**. (d) the mass spectrum showed a molecular ion at m/z 502, differing by 32 Da (2 × 16) from limonin ([M]+470) molecular weight, attributed to two additional oxygen atoms in the furanoid ring.

The same pattern could be observed for compound 3, with differences remaining on the furan ring skeleton. The 1H NMR spectrum showed singlets at δ 6.36, 5.65 and 3.55 ppm (Table I), in accord with a methoxylated dihydrofuranone ring

system and complemented by the 13C NMR spectrum that presented resonances at δ 102.7 and 124.0 ppm (Table II). The methoxyl carbon (δ 56.9) showed correlation in the HMBC spectrum with the H-21 (δ 5.65), which also correlated with the C-22 (δ 124.0) (and vice-versa). H-17 (δ 5.24) correlated with the C-20 (δ 160.5), C-22 (δ 124.0), C-14 (δ 64.8), C-13 (δ 37.8) and C-18 (δ 21.5). H-1 and H-19 showed expected limonin-type correlations, as follows: H-1 (\delta 4.07) correlated with C-3 $(\delta 169.0)$; H-19 α/β ($\delta 4.45$) correlated with C-9 (δ 48.2), C-5 (δ 61.0) and H-19 α/β (δ 4.79) with C-4 $(\delta 78.9)$, C-8 $(\delta 46.1)$. The EIMS spectrum revealed a molecular weight of 516, signifying additional 46 Da on the limonin skeleton ([M]+470) that was attributed to the presence of a methoxylated dihydrofuranone group. The occurrence of methoxylated dihydrofuranone ring on limonoids is not common; both compounds 2 and 3 were stereochemically pure and no mixture of α/β isomers were found, suggesting that they are true natural products and not artefacts caused by air or light oxidation.

Compound **4** was previously isolated from *Phellodendron amurense* (Kishi *et al.*, 1992) and named kihadalactone B. Its spectral data were completely in accordance with literature for the structure showing 1 H NMR resonances for five tertiary methyl groups (δ 0.96, 2×1.15 , 1.39 and 1.50), two acetyl (δ 1.99 and 2.11), a vinyl hydrogen (δ 5.28 br s), two oxygen-bearing methines [δ 5.15 br s and 4.82 t (J = 4 Hz)] and a γ -lactone group [δ 4.43 t (J = 8.2 Hz), 3.90 m, 2.67 m and 2.50 m]. The 13 C NMR spectrum presented two lactone carbons (δ 170.2 and 176.5), two acetyl (δ 169.9 and 169.8) and two double bonded carbons (δ 158.6 and 118.9).

For compound **5**, the ¹H NMR spectrum showed the presence of methyl groups at δ 0.89 and 1.60 ppm and a furan ring [δ 7.48 m, 7.47 br t (J = 1.7 Hz) and 6.35 m]. The ¹³C NMR spectrum of compound **5** showed carbon signals for five quaternary carbons similar to fraxinellone (**6**) (Blaise and Winternitz, 1985). Further comparison of the ¹³C NMR data for **5** and **6** indicated the presence of epoxy quaternary carbons in **5** (δ 66.1 and 65.6) instead of double bonded carbons as in **6**. In the HMBC spectrum of **5**, several ¹H -¹³C long-range correlation signals were observed, which also confirmed the attributed skeleton (Fig. 1).

Fig. 1. Main ¹H-¹³C long-range correlation signals in the HMBC spectrum of 5.

An attempt to determine the relative configuration of compound 5 by NOE difference experiments failed because of the overlapping of signals and the difficulties to selectively irradiate each hydrogen.

Compounds 3 and 5 appear to be novel in the literature.

The isolated compounds **1–4** showed no activity against trypomastigote forms (Y strain) of *T. cruzi*

Alves T. M. D., Alves R. D., Romanha A. J., dos Santos M. H., Nagem T. J. and Zani C. L. (1999), Biological activities of 7-epiclusianone. J. Nat. Prod. **62**, 369–371.

Biavatti M. W., Vieira P. C., Silva M. F. G.F., Fernandes J. B., Albuquerque S., Magalhães C. M. I. and Pagnocca F. C. (2001), Chemistry and bioactivity of *Raulinoa echinata* Cowan, an endemic Brazilian Rutaceae species, Phytomedicine (in press).

Blaise A. J. and Winternitz F. (1985), Isofraxinellone, a limonoid lactone from the bark of *Fagaropsis glabra*. Phytochemistry **24**, 2379–2381.

Champagne D. E., Koul O., Isman M. B., Scudder G. G. E. and Towers G. H. N. (1992), Biological activity of limonoids from the Rutales. Phytochemistry **31**, 377–394.

Dreyer D. L., Pickering M. V. and Cohan P. (1972), Distribution of limonoids in the Rutaceae. Phytochemistry 11, 705–713.

Kaastra R. C. (1982), *Pilocarpinae*, monograph no. 33. Flora Neotropica. New York. The New York Botanical Garden.

Kishi K., Yoshikawa K. and Arihara S. (1992), Limonoids and protolimonoids from the fruits of *Phellodendron amurense*. Phytochemistry **31**, 1335–1338.

with $IC_{50} > 500.0 \,\mu g/ml$. The compound **5** presented weak activity, with $IC_{50} = 246.8 \,\mu g/ml$.

Esenbeckia, Raulinoa, Metrodorea and Pilocarpus are genera belonging to the rutacean subtribe Pilocarpinae. So far, limonoids have been only isolated from the first genus of this group (Dreyer et al., 1972). Based on these work findings, the genus Raulinoa shown closest affinity to Esenbeckia; due to the presence of several limonoids, which have not been found in Metrodorea and Pilocarpus.

Acknowledgements

We wish to thank Professor Ademir Reis for collecting and identifying the plant material, CAPES/PIDCT and UNIVALI for Ph.D. sponsorship of MWB and FAPESP, CNPq/PRONEX, MCT/FINEP for financial support.

Jayaprakasha G. K., Singh R. P., Pereira J. and Sakariah K. K. (1997), Limonoids from *Citrus reticulata* and their moult inhibiting activity in mosquito *Culex quin-quefasciatus* larvae. Phytochemistry 44, 843–846.

Miyazawa M., Shimamura H., Nakamura S. and Kameoka H. (1995), Antimutagenic activity of isofraxinellone from *Dictamnus dasycarpus*. J. Agric. Food Chem. **43**, 1428–1431.

Nakatani M., Huang R. C., Okamura H., Iwagawa T. and Tadera K. (1998), Degraded limonoids from *Melia* azedarach. Phytochemistry 49, 1773–1776.

Ng K. M., Gray A. I. and Waterman P. G. (1987), Limonoids, alkaloids, and a coumarin from the root and stem barks of *Tetradium glabrifolium*. J. Nat. Prod. **50**, 1160–1163.

Okamura H., Yamauchi K., Miyawaki K., Iwagara T. and Nakatani M. (1997), Synthesis and biological activities of degraded limonoids, (±)-fraxinellonone and its related compounds. Tetrahedron Lett. **38**, 263–266.

Zhao W., Wolfender J. L., Hostettmann K., Xu R. and Qin G. (1998), Antifungal alkaloids and limonoid derivatives from *Dictamnus dasycarpus*. Phytochemistry **47**, 7–11.